Transcript assembly
using RNA-seq data
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Basics of RNA-seo

we sequence small bits of these

alternative splicing (isoforms/transcrims)/'

DNA (a genome)



Actual protocols are much more involved
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Prakash, Celine, and Arndt Von Haeseler. "An Enumerative Combinatorics Model for Fragmentation Patterns in RNA Sequencing Provides Insights into Nonuniformity of the Expected Fragment Starting-Point a
of Computational Biology 24.3 (2017): 200-212.



Many uses of RNA-seq for transcriptome analysis

RNA-seq data has many uses in transcriptome analysis. Some
common uses include:

—usion/chimera detection

Variant (SNP, SV, CNV) detection

Transcript assembly
Genome guided & de novo

Transcript quantification

Differential expression, alternative splicing analysis

Build higher-level models of transcription

co-expression networks -> regulatory networks



The benetit is reads are drawn directly from transcripts!
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RNA-Seq reads come from a spliced transcript — it we can map them
back to the genome, they give us evidence of transcribed regions.

Human genome contains > 14,000 pseudogenes [Pei et al. Genome
Biology 2012]

Image from: Shin, Heesun, et al. "Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion.” PloS one 9.3 (2014): €91041.



This means you see what Is there, not just what Is annotated

Fusion/chimera detection

gene Ainchr 9 gene B in chr 22

TRANSLOCATION

fusion gene — -

| TRANSCRIPTION

fusion transcript = =

short reads

Variant (SNP, SV, CNV) detection

Find small (SNP) or large (SV) variation in how read
map back to their genes of origin

Find differences in the number of copies of a gene In
the DNA (CNV)

image from: http://biome.ewha.ac.kr:8080/FusionGene/



http://biome.ewha.ac.kr:8080/FusionGene/

Many uses of RNA-seq for transcriptome analysis

RNA-seq data has many uses in transcriptome analysis. Some
common uses include:

—usion/chimera detection

Variant (SNP, SV, CNV) detection

Transcript assembly
Genome guided & de novo

Transcript quantification

Differential expression, alternative splicing analysis

Build higher-level models of transcription

co-expression networks -> regulatory networks



Into the Unknown : What to do when you don't
have / trust your reference

Multiple types of “unknown”

RN

| know the genome, but There is no reliable
not the annotation genome assembly

STAR, HISAT2, Kart, Subread de novo transcriptome

l assembly
StringTie, Strawberry, Scallop,
TransComb Trinity, BinPacker, Bridger, Trans-ABySS,

l SOAPdenovo-Trans

StringTie-merge, TACO l

Transrate / Detonate

qguant : same as when txp level: e.g. Salmon
you have a reference txome. “gene” level: Grouper, Corset, Necklace



Into the Unknown : What to do when you don't
have / trust your reference

Multiple types of “unknown”

RN

| know the genome, but There is no reliable
not the annotation genome assembly

STAR, HISAT2, Kart, Subread de novo transcriptome

l assembly
StringTie, Strawberry, Scallop,
TransComb Trinity, BinPacker, Bridger, Trans-ABySS,

l SOAPdenovo-Trans

StringTie-merge, TACO l

l Transrate / Detonate
quant : same as when txp level: e.g. Salmon
you have a reference txome. “gene” level: Grouper, Corset, Necklace

'll focus mostly on reference-quided assembly.



Qutline of transcript assembly worktlow
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Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



A detour: The splicing grapn
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Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.




A detour: The splicing grapn

In reality we observe coverage by reads, not exons.
Therefore, we end up building a slightly different
(data-dependent) graph.
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(a) Exon skipping. (b) Alternative donor sites and mutually

exclusive exons.

Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.



A detour: The splicing grapn

A’ B X C’ E
Isoforms | | E | |
A B X | D E
Blocks b1 |bo b, b, b bg
b 3 > b5
/ ! \
Isoform b1 be
Graph \ /

Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.



A detour: The splicing graph
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Beretta, Stefano, et al. "Modeling alternative splicing variants from RNA-Seq data with isoform graphs." Journal of Computational Biology 21.1 (2014): 16-40.



Building of Splice Graph

StringTie builds an alternative splicing graph (ASG)
from all reads at a genomic locus.

Skips this locus if too many (>95%) of the reads here are multi-mapping

Otherwise, reads are naively given 1/k mass at each of
their kK multi-mapping loci.

Splice graph is a DAG where nodes are contiguous genomic
regions not interrupted by spliced alignments, and edges are
placed between two nodes between which a spliced
alignment occurs.




Building of Splice Graph

ASG example (adapted from supp fig. 1)
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ertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



Processing the Splice Graph

StringTie identifies transcripts using the ASG with the

following iterative process:

1. Heuristically choose a "heavy” path (a path

with the heaviest node) in the ASG

2. Estimate path expression by compultl

flow in a flow graph corresponding to-

Ng Max-

NIS SUb-

path of the ASG. Subtract the read mass
assigned to the nodes In this path & repeat.



Choosing a Heaviest Path

StringTie chooses the heaviest path greedily, as
follows (this is an O(n) algorithm):

Pick the ASG node with the highest per-base read
coverage.

Extend nodes to the source by adding to the path the
adjacent node with the largest # of compatible reaad

fragments.

Extend nodes to the sink by adding to the path the
adjacent node with the largest # of compatible read

fragments.




Constructing the Flow Network

Splice graph with - o @
heaviest path e *‘9 e
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ﬂu Step 4: construct flow network for path in splice
graph with heaviest coverage
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Exon 1 Exon 2 Exon 3 Exon 1 Exon 2 | Exon 1 Exon 2
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Note: The flow network Iis constructed separately for
each selected transcript — the network on which the

flow problem is solved does not correspond to the
entire ASG!

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



Constructing the Flow Network

Supplementary Figure 13. Flow network associated with a transcript (shown with colored
nodes). 15 fragments (shown in grey) align to the transcript. Two nodes in the flow network are
connected iff a fragment starts and ends at those nodes. E.g., nodes 1 and 5 are connected
because fragment (a) starts at node 1 and ends at node 5. For each colored node in the
transcript, two nodes are created in the flow network. Capacities on edges (not connecting
source or sink) are shown in red.

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



Constructing the Flow Network

w— “within” edges
~ may also have
a bias factor
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Supplementary Figure 13. Flow network associated with a transcript (shown with colored
nodes). 15 fragments (shown in grey) align to the transcript. Two nodes in the flow network are
connected iff a fragment starts and ends at those nodes. E.g., nodes 1 and 5 are connected
because fragment (a) starts at node 1 and ends at node 5. For each colored node in the
transcript, two nodes are created in the flow network. Capacities on edges (not connecting
source or sink) are shown in red.

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



Constructing the Flow Network

Given the flow network, StringTie solves a generalized max-tlow problem
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Constructing the Flow Network

Given the flow network, StringTie solves a generalized max-tlow problem

generalized — edges may have multipliers (bias factors), so
flow may be gained or lost as it is sent through the network.
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Recall: Max Flow

Flow network: G = (V, E, s, t, C)

Find a flow f : E =@ R+ of maximum value

Subject to:
(1) Capacity : 0 < f(e) < coforalle € E
(2) Conservation : For every v € V (apart from s and t)

Y flo= ) fle)

e INto v e’ out of v

Value of the flow is given by:

()= ) fle)

e out of s

The below slides follow 7.1 in Kleinberg & Tardos



Recall: Basic Algorithm




Recall: Basic Algorithm

This achieves a flow of value 20, which respects (1) and (2). Is it maximum?
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This achieves a flow of value 20, which respects (1) and (2). Is it maximum?
No, but now we are “stuck” by the edges we chose. What if we could “undo”
some of the flow?



Recall: Basic Algorithm

The “dotted” line here is a “backward” edge — it doesn’t exist in the original

graph. But flows realized using such residual edges can always be realized in the

original graph by changing the forward flows. This leads to the formal
idea of the residual graph.



Recall: Basic Algorithm

If G is a flow network with a valid flow f, then the residual
Graph Gg:

Has the same node set as G

for each e = (u,v) in G where f(e) < ce, G has an edge
e=(u,v) with capacity given by ce - f(e).

for each e = (u,v) in G where f(e) > 0, Gs has an edge
e’=(v,u) with capacity f(e) — these are “backward edges”



Recall: Basic Algorithm

Let bottleneck(P,f) for a simple s-t path P with flow f be the
minimum residual capacity of any edge on P. We define
the following subroutine:

augment (f,P)

let b = bottleneck(P, f)
for e = (u,v) in P
if e = (u,v) is forward

increase f(e) in G by b
else (u,v) is backward let e = (v,u)
decrease f(e) in G by b
endif
endfor
return f



Recall: Basic Algorithm

We can then find a maximum flow as follows

MaxFlow (G)
set f(e) = @ for all e in G
while there 1s an s—-t path 1n Gs
let P be a simple s—t path in Gr
f’ = augment(f, P)

f =1’
Gr = Gr
endwhille

return f



Recall: Basic Algorithm

Initially, flow is 0, and Gi = G



Recall: Basic Algorithm

S ->u->v->tis chosen, and we push 20 units across it
We update Gs



Recall: Basic Algorithm

S ->v->u->tis chosen, and we push 10 units across it



Recall: Basic Algorithm

20 10

10

() =

S ->v->u->tis chosen, and we push 10 units across it
We update Gs



Recall: Basic Algorithm

20 10

10

No more s-t paths in the residual graph. Algorithm terminates
with v(f) = 30 (the maximum).



Recall: Basic Algorithm

@ 1 020 @

10 !

This is the basic Ford-Fulkerson algorithm. Running time is O(mQC)

Strongly-polynomial algorithms exist (e.g. Dinitz-Edmonds-Karp O(hm?2))
One can reduce Max Flow with minimum bounds to Max Flow

One can also add gain / loss as is necessary in StringTie



Bias-aware MaxFlow algorithm

Max-flow procedure

Input: flow network with sink, source, multipliers (b, as defined
in Methods), and capacities on the edges
Output: maximum flow flowpax

Initialization: set flow,..=0
for all edges (u,v) in network
flow,,=0
end for

while there is an augmenting path p° in network
set u to sink (the last node in p)
bias(u) =1
increment = =«
while there is predecessor v of node u in p
increment = min(increment,capacityy,— bias(u) *flowy,)
if there is a predecessor w of v in p
if v comes before u in the ASG
if w comes before v in the ASG
bias (v)=bias (u) *by,
else bias(v)=bias (u)
end if
else if w comes before v in the ASG
bias(v)=bias (u)
else bias(v)=bias(u) /b,

end if
end if
end if
u =v
end while

for all consecutive nodes u,v (u before v) in p
flow,, += increment/bias(u)
flowy,, —= increment/bias(u)

end for

flow,,, += 1lncrement

end while



Processing the Splice Graph

Repeat:

1. Heuristically choose a “*heavy” path (a path

with the heaviest node) in the ASG

2. Estimate path expression by computl

flow in a flow graph corresponding to-

Ng Max-

NIS SUb-

path of the ASG. Subtract the read mass
assigned to the nodes In this path & repeat.

Until:

Coverage of heaviest path falls below 2.5 reads

per-base

Interestingly. Unlike other approaches that try to use the
flow graph to find and quantify the paths, StringTie uses
a heuristic to select the transcript, and flow only to quantify

the selected path.
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Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



Results

3 b

Sensitivity (%) Sensitivity (%)
Sim-| Sim-ll
‘ 55 . 55 _ ' ‘80 =
60 -
50 - ® - N
o 40 -
45 — 45 -
20 - . .
@ B Gene Transcript Gene Transcript
40 - A 40 - A 20 - I I 20 ]
35 - 35 - 40 - I 40 -
b
30 | | . 30 | | | 80 - °0"
5 25 45 65 20 40 60 80 80 - 80 -
» v
Precision (%) Precision (%) Sim-l Sim-ll
¢ StringTie+SR ¢ StringTie W Cufflinks @ Scripture A IsoLasso ® Traph M StringTie+SR M StringTie M Cufflinks ™ Traph M Scripture M IsolLasso

Figure 2 Transcriptome assemblers’ accuracies in detecting expressed transcripts from two simulated RNA-seq data sets. (a) Transcriptome assemblers
accuracies in detecting expressed transcripts from two simulated RNA-seq data sets. In data set Sim-I| (left), the fragment sizes follow an empirical
distribution based on Illumina sequences, and in Sim-II (right) the fragment sizes follow a parameterized normal distribution. StringTie+SR pre-
assembles the reads into super-reads when possible. (b) Accuracy of transcriptome assemblers on gene loci from the same two data sets, considering
only those transcripts that were completely covered by input reads. Scripture’s precision on Sim-|l was 17.7%, below the 20% minimum shown here.

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.
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Figure 3 Accuracy of transcript assemblers at assembling known genes, measured on real data

sets from four different tissues. Known genes are defined as those annotated in either the RefSeq,
UCSC or Ensembl human gene databases. Gene level sensitivity (y axis) measures the percentage of
genes for which a program got at least one i1soform correct, whereas transcript sensitivity measures
the percentage of known transcripts that were correctly assembled. Precision (x axis) Is measured
as the percentage of all predicted genes (transcripts) that match an annotated gene (transcript).

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



StringTie ldentifies More Transcripts Than Cufflinks

Supplementary Table 11. Symmetric differences beween StringTie and Cufflinks on four real
data sets. For each data set, the table shows the number of transcripts identified correctly by
StringTie but missed by Cufflinks, the number identified by Cufflinks but missed by StringTie,
and the number identified correctly by both programs.

Data set Unique to StringTie  Unique to Cufflinks  Common to both
Kidney 6652 2177 7068
Blood 5834 2031 5156
Lung 5272 1937 8434

Monocytes 5206 2050 5452

Pertea, Mihaela, et al. "StringTie enables improved reconstruction of a transcriptome from RNA-seq reads." Nature biotechnology 33.3 (2015): 290.



Scallop improves assembly by preserving “phasing paths”

BRIEF COMMUNICATIONS

nature
biotechnology

Accurate assembly of transcripts
through phase-preserving graph
decomposition

Mingfu Shao & Carl Kingsford
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— — — — - e— 3243)5 6@

S — - — 1
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Supplementary Figure 1: Example of building splice graph and phasing paths. (a) Alignment of reads to
the reference genome. Inferred splice positions are marked with black bars; inferred starting and ending
positions are marked with green and blue bars, respectively. Exons and partial exons are labeled with
numbers above the reference genome. Reads that span more than two exons are colored red, from which
we can get the set of phasing paths as {(1,3,4),(2,3,5),(1,3,5)}. The abundance of these phasing paths
are g(1,3,4) =2, g(2,3,5) =1, and g(1,3,5) = 1. (b) The corresponding splice graph and weights for all
edges.

phasing paths = sub-paths of the splicing graph where read
evidence supports >1 splicing junction.

Scallop preserves observed sub-paths.

Shao, Mingfu, and Carl Kingsford. "Accurate assembly of transcripts through phase-preserving graph decomposition." Nature biotechnology 35.12 (2017): 1167.



Preserving “phasing paths” improves

accuracy
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Figure 1 Comparison of the three methods (StringTie, TransComb, and Scallop) over the five testing samples. (a) The precision-sensitivity curves for multi-
exon transcripts. Each curve connects ten points, corresponding to minimum coverage thresholds {0, 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100}, the default value
is circled. (b) The average AUC (area under the precision-sensitivity curve) over the five samples. The error bars show the s.d. (the same for other panels).

(c) The average sensitivity and precision of multi-exon transcripts running at default parameters. (d) The average sensitivity and precision of multi-exon
transcripts running with minimum coverage set to 0. (e) The average sensitivity and precision of single-exon transcripts running at default parameters. (f) The
average sensitivity and precision of multi-exon transcripts corresponding to low, middle, and high expression levels running with minimum coverage set to O.

Shao, Mingfu, and Carl Kingsford. "Accurate assembly of transcripts through phase-preserving graph decomposition." Nature biotechnology 35.12 (2017): 1167.



Some other interesting assemblers

, RESEARCH ARTICLE

- Strawberry: Fast and accurate genome-
- guided transcript reconstruction and
- quantification from RNA-Seq

Ruolin Liu, Julie Dickerson*

- Bayesian transcriptome assembly '

Lasse Maretty', Jonas Andreas Sibbesen' and Anders Krogh'

et | 1 NESE MEEHOAS, IN particular, solve
identification and quantification
simultaneously.

. Gene expression

: . Conceptually, this seems like the strongest
‘Sparselso: a novel Bayesian approach to approach

Eidentify alternatively spliced isoforms from given how related the problems are.
RNA-seq data '

Xu Shi’, Xiao Wang’, Tian-Li Wang?, Leena Hilakivi-Clarke?®,
'Robert Clarke® and Jianhua Xuan'*




